SMOOTH MANIFOLDS FALL 2023 - HOMEWORK 3

Problem 2. Let S_{1} and S_{2} be level sets of functions $F_{1}, F_{2}: \mathbb{R}^{3} \rightarrow \mathbb{R}$ at regular values, respectively. Show that $S_{1} \cap S_{2}$ is the level set of a function F (you have to find it), and use this function to show that if for every $x \in S_{1} \cap S_{2}$, ker $d F_{1}(x) \neq \operatorname{ker} d F_{2}(x)$, then $S_{1} \cap S_{2}$ is a 1-manifold.
Problem 3. Let $S(x, r)$ denote the sphere of radius r based a a point $x \in \mathbb{R}^{3}$, and $C(v, r)$ denote the cylinder centered at the line through 0 in the unit vector v of radius r :

$$
C(v, r)=\left\{y \in \mathbb{R}^{3}:\left\|\pi_{v}(y)\right\|=r\right\}
$$

where $\pi_{v}: \mathbb{R}^{3} \rightarrow\langle v\rangle^{\perp}$ is the orthogonal projection onto the orthogonal complement of v.
(a) Find functions $F_{v, r}: \mathbb{R}^{3} \rightarrow \mathbb{R}$ and $G_{x, r}: \mathbb{R}^{3} \rightarrow \mathbb{R}$ such that $C(v, r)$ and $S(x, r)$ are levels sets of F and G respectively.
(b) For which points, vectors and radii are the sphere and cylinder $S\left(x, r_{1}\right)$ and $C\left(v, r_{2}\right)$ transverse? For which are they nontrivially transverse?

Remark 1. A submersion with compact preimages always induces a "local product structure" between open subsets of the base manifold N and the fibers $F^{-1}(y)$ as described by the previous problem. Such structures are also sometimes called fiber bundles or fibrations.

Problem 4. Let $M \subset \mathbb{R}^{3}$ be a compact surface and $E \subset \mathbb{R}^{3}$ be a plane passing through 0 . Show that there exists a plane $E+v$ parallel to E such that $M \cap(E+v)$ is a nonempty union of circles. [Hint: If you want to apply Sard's theorem, make sure you read the fine print (ie, pay attention to the difference between a regular value and a non-trivial regular value). The conclusion fails when M is not compact!]

